

DPP – 3 (Nuclear Physics)

Video Solution on Website:-

https://physicsaholics.com/home/courseDetails/88

Video Solution on YouTube:-

https://youtu.be/TY9NITFV9D0

Written Solution on Website:-

https://physicsaholics.com/note/notesDetalis/28

Q 1. In a radioactive decay, let N represent the number of residual active nuclei, D the number of daughter nuclei, and R the rate of decay at any time t. Three curves are shown in Fig. The correct ones are –

- (a) 1 and 3
- (b) 2 and 3
- (c) 1 and 2
- (d) all three
- A freshly prepared radioactive source of half-life 2 hr emits radiation of intensity Q 2. which is 64 times the permissible safe level. The minimum time after which it would be possible to work safely with this source is
 - (a) 6 h
- (b) 12 h
- (c) 24 h
- (d) 128 h
- The count rate of activity of a radioactive sample of a very large population decreased Q 3. from 1024 to 128 in 3 minutes. Then the rate of disintegration at the end of 5 minutes is
 - (a) 96
- (b) 64
- (c) 48
- (d) 32
- Q 4. If 10% of a radioactive substance decays in every 5 years, then the percentage of the substance that will have decayed in 20 years will be -
 - (a) 40%
- (b) 50%
- (c) 65.6 %
- (d) 34.4 %
- Q 5. A radioactive material of half-life T was produced in a nuclear reactor at different instants, the quantity produced second time was twice of that produced first time. If now their present activities are A₁ and A₂ respectively then their age difference equals
 - (a) $\frac{T}{\ln 2} \left| \ln \frac{2A_1}{A_2} \right|$
- (c) $\frac{T}{\ln 2} \left| \ln \frac{A_2}{2A} \right|$
- (b) T $\left| ln \frac{A_1}{A_2} \right|$ (d) T $\left| ln \frac{A_2}{2A_1} \right|$
- Q 6. The half life period of a radioactive element X is same as the mean life time of another radioactive element Y. Initially both of them have the same number of atoms. Then -(a) X & Y have the same decay rate initially

hysicsaholics

- (b) X & Y decay at the same rate always
- (c) Y will decay at a faster rate than X
- (d) X will decay at a faster rate than Y
- Q 7. A radioactive substance is being produced at a constant rate of 200 nuclei/s. The decay constant of the substance is 1 s⁻¹. After what time the number of radioactive nuclei will become 100. Initially there are no nuclei present?
 - (a) 1 s
- (b) $1/(\ln(2))s$
- (c) In (2) s
- (d) 2 s
- Q 8. There are two radioactive substances A and B. Decay constant of B is two times that of A. Initially both have equal number of nuclei. After n half lives of A rate of disintegration of both are equal. The value of n is:
 - (a) 1
- (b) 2
- (c) 4

- (d) all of these
- Q 9. A radioactive isotope A decays into another isotope B which has a half-life equal to 1/2 of that of A. Both isotopes emit α-particles during their decay, and B decays into a stable nucleus. If a sample consists initially of atoms of A only, then the net activity of the sample initially:
 - (a) increases with time

(b) decreases with time

(c) remains constant

- (d) any of the above may be true
- Q 10. There are two radio nuclei A and B. A is an alpha emitter and B a beta emitter. Their disintegration constants are in the ratio of 1: 2. What should be the ratio of number of atoms of A and B at any time t so that probabilities of getting alpha and beta particles are same at that instant?
 - (a) 2:1
- (b) 1:2
- (c) e
- (d) e^{-1}
- Q 11. After 280 days, the activity of a radioactive sample is 6000 dps. The activity reduces to 3000 dps after another 140 days. The initial activity of the sample in dps is:
 - (a) 6000
- (b) 9000
- (c) 3000
- (d) 24000
- Q 12. In radioactivity number of nuclei of two radioactive substances 1 and 2 are shown in figure. Match the following

Table-1		Table-2	
(A)	Initial activity of	(P)	1 is more

Physicsaholics

(B)	Half-life of	(Q)	2 is more
(6)	5	(D)	
(C)	Decay constant of	(R)	nothing can be said

COM	COMPREHENSION (Q13 to Q15) We have two radioactive nuclei A and B. Both convert into a stable nucleus C. Nucleus A converts into C after emitting two α -particles and three β -particles. Nucleus B converts into C after emitting one α -particle and five β particles. At time $t=0$, nuclei of A are 4 N ₀ and that of B are N ₀ . Half-life of A (into the conversion of C) is 1min and					
Q 13.	that of B is 2 min. Initially number of If atomic numbers and mass number Then: (a) $Z_1 - Z_2 = 6$ (c) both (a) and (b) are correct	rs of A ar				
Q 14.	What are number of nuclei of C, when $(a) 2N_0$ $(b) 3 N_0$		of nuclei of A and c) $\frac{9N_0}{2}$	B are equal? (d) $\frac{5N_0}{2}$		
Q 15.	At what time rate of disintegrations of (a) 4 min (b) 6 min		3 are equal.	(d) 2 min		
Q 16.	A radioactive material decays by simulal half-lives 1620 and 810 years. The tirremains is (a) 1080 (b) 2430	ne, in yea				
Q 17.	Equal masses of two samples A and E carbon-di-oxide from two samples counts per month and that from sam difference of two samples is - (Half I (a) 5730 Y (c) 17190 Y	is measuı ple B giv	red. The gas from es 2.5×10^3 counts is 5730 years) – 0 Y	sample A gives 10 ⁴		
Q 18.	The radioactive carbon gets produced (a) reaction of radium rays on simple (b) reaction of cosmic rays on simple (c) reaction of high energy neutrons of	carbon				

(d) reaction of cosmic rays on oxygen.

Answer Key

Q.1	d	Q.2 b	Q.3 d	Q.4 d	Q.5 c
Q.6	c	Q.7 c	Q.8 a	Q.9 a	Q.10 a
Q.11	d	Q.13 b	Q.14 c	Q.15 b	Q.16 a
Q.17	b	Q.18 c			

